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Letters

Comments on “Some Pitfalls in Millimeter-Wave Noise

Measurements Utiking a Cross-Correlation

Receiver”

H. J. SIWERJS, B. SCHIEK, AND K. M. LUDEKE

In the above paper, 1 Sutherland and van der Ziel analyze some

problems encountered during noise measurements at very low

temperatures with a cross-correlation receiver. It is shown that, if

a hybrid junction is used to split the noise signaJ from the device

under test (DUT) into the two receiver channels, the correlation

between the receiver input signals, which contains the useful

information, vanishes if the remaining port of the hybrid is

resistively terminated at a temperature equal to that of the DUT.

The same effect occurs for a pure reactive termination, if the

isolators used to decouple the receiver channels are also cooled

down to the temperature of the DUT.

These results are absolutely coheet but, as will be pointed out

in this comment, they could have been obtained in a more

straightforward and general way by the application of a very

useful theorem, which was published by Bosma [1] already in

1967, but which does not seem to have received the appreciation

it deserves. This theorem relates the Nyquist noise waves emanat-

ing from the ports of a passive. linear, but not necessady

reciprocal n-port at a homogeneous temperature T, to the scatter-

ing matrix [S] of the network. Explicitly, for the noise waves X,

and X, at ports i and j, respectively, it states that

(~~) = kTAjiV,, (1)

with N,J denoting the elements of the noise-distribution matrix

[N]=[I]-[S][S]X (2)

where [1] is the identity matrix and [ S ]‘ the complex conjugate

of the transposed scattering matrix. Thus, the cross-correlation of

the noise waves Xl and X2 of a two-port is given by

(X,XJ) = - kTAf(S,,Sj, + S,, S;,). (3)

It follows from (3) that for all linear passive two-ports at a

uniform temperature, the correlation vanishes if S_l~= S22 = O,

i.e., if the two-port is perfectly matched. The same holds if the

two-port is decoupled, i.e., S12 = S21 = O.

The two-circuit configuration mentioned above, namely a hy-

brid with the DUT and a resistive termination in one case, and

with the DUT, a reactive termination and two isolators in the

other, are matched linear passive two-ports which, since all

components me cooled, are at a homogeneous temperature. Thus,

according to Bosma’s theorem, the correlation of the noise waves

must be zero.

However, the theorem no longer holds if the two-port is not at

a uniform temperature. Consequently, Sutherland and van der
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Ziel obtain a correlation for a hybrid with a

reactive termination, but uncooled isolators.

Replyz by A. D. Sutherland and A. van der Zie13

cold DUT and

We wish to thank H. J. Siweris, B. Schick, and K. M. Liideke

for calling our attention to Bosma’s work, of which we were

unaware. On checking that reference we found it to be a lengthy

tome indeed, consisting of some 190 pages. It is packed with

matrix equations which do not readily reveal their meaning upon

first reading. In fact, it appears to be unabridged version of

Bosma’s Ph,D, dissertation. Tucked away as it is within those 190

pages, it is not surprising that the theorem cited by Siwens et a{,

has “not received the appreciation it deserves.”

Although the treatment in our paper focused exclusively upon

the noise problems introduced by utilizing a hybrid junction as a

power divider, and therefore is not as generaf as the theorem

cited due to Bosma, there are nonetheless advantages to the

approach followed by us, i.e., a) the use of signal flow graphs, as

used by us, avoids the need for matrix algebra, b) the sources of

the noise emanating from the hybrid are readily identified, and c)

there is no need to assume a homogeneous temperature for those

noise sources, as does the theorem cited.
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Comments on “The Dynamical Behavior of a

Singie-Mode Optical Fiber Strain Gage”

PATFUCIO A. A. LAUR4 AND JOSE L. POMBO

L INTRODUCTION

In the above paper, 1 Martinelli [1] presents a very interesting

and useful comparison between the dynamical response of a

single-mode fiber optic and resistive strain gages in the frequency

range 25 –250 Hz. As shown by the author, the frequency spec-

trum of the phase change signal and the resistive strain gage

signal are in very good agreement.

It is the purpose of the present letter to discuss two points

which, in the opinion of the writers, need further clarification: a)

the validity of the mechanical analysis with speciaJ reference to

the single-mode approximation; and b) the effect of an axial

force which may be present if the mechanical boundary condi-

tions restrain the axial displacements of the structural element.
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II. THE SINGLE-MODE APPROXfMAYfON

Transverse vibrations of the simply supported beam shown in

Fig. l(a) are described by the well-known Lagrange-Sophie

Germaine’s mathematical mode12

~1 a4s
— + pAO~ = FOcos2~vt.8(x – al)
ax4

(1)

(b)where E is Young’s modulus, I is the moment of inertia, p is the

mass density, A ~ is the cross-sectional area, and 8(x – a,) is the

Dirac’s delta function (x = al).

The governing boundary conditions are

s(o, t)=s(L, t)=o (2a)

Fig. 1. Vibrating structural element under study: (a) no rr.xiaf force: (b) axial

force present.

~ 5WFOL3,E,
o 22;

&(o, t)=g(L,t)=o. (2b)

The forced vibrations situation is easily solved expanding

Dirac’s delta function in terms of the normal modes of the

structure (sin n nx/L), resulting then in
0201 T

EXACT s0Lu710N
I
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MODE) SOLUTION.
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one obtains, substituting (3) and (4) in (1)
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where

u = 2 T v (forcing circular frequency), and
/
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~n=~(%r(natural frequencies of the system).

Accordingly
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Fig. 2. Amplitude of the dynamic displacement at the center of the beam

(a, = L/2).

The stress resultants (commonly used in engineering practice)

are now as follows.

Bending Moment The strain txx is simply

A4(x, t)z
txx(x,l)= E1azs

M(x, t)= – EI—
C?X2

(8a)

forz=a (a=

(8b)

dynamic strain

and the maximum positive strain is attained

semithickness of the beam)
M(x, t)a

Cxx(x, t)= ~1 .

Consequently, the amplitude of the maximum(7a)

Shear Force

is given by
nwal

Obviously, (9) expresses the fact that the strain is directly

proportional to the bending moment at a given cross section.

It should be clew” at this point that the displacement ampli-

tudes can be determined with very good accuracy using the first

term of (6) for the entire range of frequency values considered by

Martinelli [ 1]. This agrees also with the statement of Timoshenko’s

classic textbook [2] and is clearly illustrated in Fig. 2 (al= L/2).

(7b)

2In general, the notation used in [1] is foflowed.
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Fig. 3. Amplitude of the dynaruic bending moment at the center of the beam

(U1 = L/2).

TABLE I

COMPARISON OF BENDING MOMENT AMPLITUDES M/FO L AT THE

MIDSPAN OF A VIBRATING BEAM SUBJECTED TO A FORCED

EXCITATION AT X = L/2

——.
g
~1

——

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.95

Approximate<?
Result——.

0.203

0.205

0.211

0.223

0.241

0.270

0.317

0.397

0.562

1.066

2.078

. -—
Values of &

Exact

0.250

0.252

0.258

0.270

0.289

0.318

0.364

0.445

0.610

1.114

2.126

Error

19%

18.7%

18.1%

17.5%

16.5%

15. OZ

13.0%

10.7%

8.2x

4.3%

2.2%

—

On the other hand, it is not permissible to determine strains (or

bending moments) using only the fundamental mode shape, ‘as

has been done by Martinelli [1], since this generates considerable

error as shown in Table I (see also Fig. 3), This fact constitutes a

basic theorem of the theory of Fourier series.

Admittedly, the expressions for the phase modulation induced

in the laser beam emerging from the fiber cemented on the

vibrating bar, and the fiber-optic microstrain obtained by

Martinelli [1], may not show considerable numerical difference

from a practical viewpoint when the appropriate series expression

is used; but the conceptual requirement is very important in the

opinion of the writers.

III. EFFECT OF AN IN-PLANE AXIAL FORCE

If the boundary constraints restrain the motion of the beam in

the x-direction, an axial force S is generated (Fig. l(b)). In the

case of a transversely vibrating beam, this force s will be, in

general, a function of time. Equation (1) must now be changed to

include the effect of the axial force and now reads

~1 (34s azs a%
—= FoCos277vt.8(x -al). (10)———+PAO~ – ‘8X2

ax4

It is easy to show that if S >0 (tensile force), the naturaf

frequencies increase. In essence, the beam behaves as a stiffer

structural element.

IV. CONCLUSIONS

Distinguished vibrations experts like Leissa [3] agree on the

fact that the determination of dynamic stresses and strains in

vibrating structural elements is, in general, a difficult task, espe-

cially in cases where the exact normal modes are not known.

Several studies have been performed at the Institute of Applied

Mechanics in recent years [4]–[6] in this area.

Reply 3 by Mario Martinelli 4

The authors have drawn attention to the mechanical analysis

involved in my paper with particular reference to the dynarnicaJ

strain state of the steel bar, and consequently of the fiber. Their

letter reports interesting results, and I think their discussion

improves the theoretical treatment of the optical fiber strain

sensors.

In my opinion, a realistic prediction of the vibration phenom-

ena requires that the analysis should be completed by taking into

account the dynamical damping factor, too.

Since it is difficult to determine this factor with sufficient

precision, the choice of a direct comparison [1] between the

deformation state of the fiber and that measured using a well-

known device (such as the resistive strain gage) seems appropriate

to me.

I would like to take this opportunity to make two corrections

of typographical errors appearing in [1, p. 514]. On the left

column the variable “z” in the expressions (6) and (7) must be

read as the lower label of d( l/n2).

On the right column, row 10, N must be read as p.

Moreover on page 515, left column, row 10, the phrase “Plots

of the rms photodiode signal (full line) and of the rms bridge

amplifier (dashed line)” should be read” Plots of the peak-to-peak

photodiode signaf (full line) and of the peak-to-peak bridge

amplifier (dashed line)”, and the verticaf scale of Fig. 3 must be

intended as labeled in peak-to-peak values.
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