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Comments on “Some Pitfalls in Millimeter-Wave Noise
Measurements Utilizing a Cross-Correlation
Receiver”

H. J. SIWERIS, B. SCHIEK, anp K. M. LUDEKE

In the above paper,! Sutherland and van der Ziel analyze some
problems encountered during noise measurements at very low
temperatures with a cross-correlation receiver. It is shown that, if
a hybrid junction is used to split the noise signal from the device
under test (DUT) into the two receiver channels, the correlation
between the receiver input signals, which contains the useful
information, vanishes if the remaining port of the hybrid is
resistively terminated at a temperature equal to that of the DUT.
The same effect occurs for a pure reactive termination, il the
isolators used to decouple the receiver channels are also cooled
down to the temperature of the DUT.

These results are absolutely correct but, as will be pointed out
in this comment, they could have been obtained in a more
straightforward and general way by the application of a very
useful theorem, which was published by Bosma [1] already in
1967, but which does not seem to have received the appreciation
it deserves. This theorem relates the Nyquist noise waves emanat-
ing from the ports of a passive. linear, but not necessarily
reciprocal n-port at a homogeneous temperature 7, to the scatter-
ing matrix [ S] of the network. Explicitly, for the noise waves X,
and X, at ports i and j, respectively, it states that

(X.Xry=kTAfN, (1)

with N,, denoting the elements of the noise-distribution matrix

[N]=[1]-[s][sT” (2
where [I] is the identity matrix and [S]* the complex conjugate
of the transposed scattering matrix. Thus, the cross-correlation of
the noise waves X; and X, of a two-port is given by

(X, X3y =—kTAf(S,18}, + $1,5%). (3)

It follows from (3) that for all linear passive two-ports at a
uniform temperature, the correlation vanishes if S;;=S,, =0,
ie., if the two-port is perfectly matched. The same holds if the
two-port is decoupled, ie., §;, =8, =0.

The two-circuit configuration mentioned above, namely a hy-
brid with the DUT and a resistive termination in one case, and
with the DUT, a reactive termination and two isolators in the
other, are matched linear passive two-ports which, since all
components are cooled, are at a homogeneous temperature. Thus,
according to Bosma's theorem, the correlation of the noise waves
must be zero.

However, the theorem no longer holds if the two-port is not at
a uniform temperature. Consequently, Sutherland and van der
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Ziel obtain a correlation for a hybrid with a cold DUT and
reactive termination, but uncooled isolators.

Reply? by A. D. Sutherland and A. van der Ziel®

We wish to thank H. I. Siweris, B. Schiek, and K. M. Liideke
for calling our attention to Bosma’s work, of which we were
unaware. On checking that reference we found it to be a lengthy
tome indeed, consisting of some 190 pages. It is packed with
matrix equations which do not readily reveal their meaning upon
first reading. In fact, it appears to be unabridged version of
Bosma’s Ph.D. dissertation. Tucked away as it is within those 190
pages, it is not surprising that the theorem cited by Siweris et a/.
has “not received the appreciation it deserves.”

Although the treatment in our paper focused exclusively upon
the noise problems introduced by utilizing a hybrid junction as a
power divider, and therefore is not as general as the theorem
cited due to Bosma, there are nonetheless advantages to the
approach followed by us, i.¢., a) the use of signal flow graphs, as
used by us, avoids the need for matrix algebra, b) the sources of
the noise emanating from the hybrid are readily identified, and ¢}
there is no need to assume a homogeneous temperature for those
noise sources, as does the theorem cited.
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Comments on “The Dynamical Behavior of a
Single-Mode Optical Fiber Strain Gage”

PATRICIO A. A. LAURA anp JOSE L. POMBO

I. INTRODUCTION

In the above paper,’ Martinelli [1] presents a very interesting
and useful comparison between the dynamical response of a
single-mode fiber optic and resistive strain gages in the frequency
range 25-250 Hz. As shown by the author, the frequency spec-
trum of the phase change signal and the resistive strain gage
signal are in very good agreement.

It is the purpose of the present letter to discuss two points
which, in the opinion of the writers, need further clarification: a)
the validity of the mechanical analysis with special reference to
the single-mode approximation; and b) the effect of an axial
force which may be present if the mechanical boundary condi-
tions restrain the axial displacements of the structural element.
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II. THE SINGLE-MODE APPROXIMATION

Transverse vibrations of the simply supported beam shown in
Fig. 1(a) are described by the well-known Lagrange-Sophie
Germaine’s mathematical model?

3*s 9%
El— + pAy— 1
Ix 4 pAg atz ( )
where E is Young’s modulus, I is the moment of inertia, p is the
mass density, 4, is the cross-sectional area, and §(x — a,) is the
Dirac’s delta function (x = a,).
The governing boundary conditions are

s((),t) =s(L,t)=0

= Fycos2mvt-8(x—a,)

(22)
(2b)
The forced v1brat10ns situation is easily solved expanding

Dirac’s delta function in terms of the normal modes of the
structure (sin nwx /L), resulting then in

(0 t)——(L 1) =0.

nﬂ'al nmwx

S(x—a)—— Z sin sin ——, 3)
n=1 L
Since
“ , . nmx
s(x,t)=cos2avt ), b,sin—= 4
n=1
one obtains, substituting (3) and (4) in (1)
sin el
2 K

b= ——r )

Lpdy 2 —-u?

where
o = 2qv (forcing circular frequency), and
EI
w, = 1/ oA ( ) (natural frequencies of the system).
0
Accordingly
sin nwa,
K bl L . nmx

s(x, t)—ZTCosth — 5 sin—-. (6)

n=1 W, — W

The stress resultants (commonly used in engineering practice)
are now as follows.

Bending Moment
M(x, t)———EI—a—s
dx?
sin ddidid
—2~E—I—icoswt y (M)z-——L sin 22
Lpdy " ", 2\L) @2-u? ™ L7
\ (7a)
Shear Force
Ps
x,t)=—EI—
0(x,1) =~ BT
g nwa,
=2£————F° cos wt y (ﬂ)3 L cos——mrx
L pA, sV L w2 — w? L -
(7v)

2In general, the notation used in [1] is followed.
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Fig. 1. Vibrating structural element under study: (a) no axial force: (b) axial

force present.
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Fig. 2. Amplitude of the dynamic displacement at the center of the beam
(ay=L/2).

The strain ¢, is simply

xx(x ) = (8a)

and the maximum positive strain is attamed for z=a (a=
semithickness of the beam)

€x(X, )= (8b)

Consequently, the amplitude of the maximum dynamic strain
is given by

M(x 1)z

M(x t)a

L
a K ¢ M)2 W7 nax
xx(x t)l L pA Z ( L w’%—wz sin L - (9)

Obviously, (9) expresses the fact that the strain is directly
proportional to the bending moment at a given cross section.

It should be clear at this point that the displacement ampli-
tudes can be determined with very good accuracy using the first
term of (6) for the entire range of frequency values considered by
Martinelli [1]. This agrees also with the statement of Timoshenko’s
classic textbook [2] and is clearly illustrated in Fig. 2 (g, = L/2).
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Fig. 3. Amplitude of the dynamic bending moment at the center of the beam
(a;=L/2).
TABLEI

COMPARISON OF BENDING MOMENT AMPLITUDES M/ Fy- L AT THE
MIDSPAN OF A VIBRATING BEAM SUBJECTED TO A FORCED
EXCITATIONAT X =L /2

M
%1 Approxin‘f:ttue £ fo L ] Ervor
Result . Exact

0 0.203 0.250 19%

.1 0.205 0.252 18.7%
0.2 0.211 0.258 18.1%
0.3 0.223 0.270 17.5%
0.4 0.241 0.289 16.5%
0.5 0.270 0.318 15.0%
0.6 0.317 0.364 13.0%
0.7 0.397 0.445 10.7%
0.8 0.562 0.610 8.2%
0.9 1.066 1.114 4.3%
0.95 2.078 2.126 2.2%

On the other hand, it is not permissible to determine strains (or
bending moments) using only the fundamental mode shape, as
has been done by Martinelli [1], since this generates considerable
error as shown in Table I (see also Fig. 3). This fact constitutes a
basic theorem of the theory of Fourier series.

Admittedly, the expressions for the phase modulation induced
in the laser beam emerging from the fiber cemented on the
vibrating bar, and the fiber-optic microstrain obtained by
Martinelli {1], may not show considerable numerical difference
from a practical viewpoint when the appropriate series expression
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is used; but the conceptual requirement is very important in the
opinion of the writers.

II1.

If the boundary constraints restrain the motion of the beam in
the x-direction, an axial force S is generated (Fig. 1(b)). In the
case of a transversely vibrating beam, this force S will be, in
general, a function of time. Equation (1) must now be changed to
include the effect of the axial force and now reads

4 2 als
Elgx—i %— §=Fbcos2mft'8(x—a]). (10)

It is easy to show that if §> 0 (tensile force), the natural
frequencies increase. In essence, the beam behaves as a stiffer
structural element.

EFFECT OF AN IN-PLANE AXIAL FORCE

+ pAO

IV. CoNcLUsiONS

Distinguished vibrations experts like Leissa [3] agree on the
fact that the determination of dynamic stresses and strains in
vibrating structural elements is, in general, a difficult task, espe-
cially in cases where the exact normal modes are not known.
Several studies have been performed at the Institute of Applied
Mechanics in recent years [4]-[6] in this area.

Reply? by Mario Martinelli*

The authors have drawn attention to the mechanical analysis
involved in my paper with particular reference to the dynamical
strain state of the steel bar, and consequently of the fiber. Their
letter reports interesting results, and I think their discussion
improves the theoretical treatment of the optical fiber strain
SEensors.

In my opinion, a realistic prediction of the vibration phenom-
ena requires that the analysis should be completed by taking into
account the dynamical damping factor, too.

Since it is difficult to determine this factor with sufficient
precision, the choice of a direct comparison [1] between the
deformation state of the fiber and that measured using a well-
known device (such as the resistive strain gage) seems appropriate
to me.

I would like to take this opportunity to make two corrections
of typographical errors appearing in [1, p. 514]. On the left
column the variable “z” in the expressions (6) and (7) must be
read as the lower label of d(1/n?).

On the right column, row 10, N must be read as p.

Moreover on page 515, left column, row 10, the phrase “Plots
of the rms photodiode signal (full line) and of the rms bridge
amplifier (dashed line)” should be read “Plots of the peak-to-peak
photodiode signal (full line) and of the peak-to-peak bridge
amplifier (dashed line)”, and the vertical scale of Fig. 3 must be
intended as labeled in peak-to-peak values.
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